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On the Continuous-Time Model for
Nonlinear-Memory Modeling of

RF Power Amplifiers
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Abstract—The RF front-end in modern communication systems
is faced with variable envelope and large bandwidth signals (in-
cluding desired signals and large interferers), which require the be-
havioral model of the amplifying unit (either in Tx or Rx) to accu-
rately account for nonlinear memory effects. Important advance-
ments have been made on the subject; however it is still challenging
to derive a model that performs equally well with all possible input
stimuli. This paper gives a concise overview of the recent develop-
ments that have been made on the continuous-time modeling ap-
proach for the behavioral modeling of nonlinear memory in power
amplifiers, as opposed to the explicit discrete-time modeling ap-
proach.

Index Terms—Behavioral modeling, nonlinear integral model,
nonlinear memory, RF amplifier.

I. INTRODUCTION

T HE behavioral modeling of the power amplifier (PA) has
lately been the subject of numerous studies, especially in

the context of solid-state amplifiers and mobile communication
systems [1], [2]. Accurate, simple to extract and fast execution
behavioral models of PA are necessary for the exploration and
optimization of the communication system performance, as well
as for the PA linearization design. It must also be noted that even
though the modeling focus is usually on the transmit PA, an ac-
curate model is also necessary for the receive low-noise ampli-
fier (LNA), as this is frequently made to work in a saturated
regime by large peak-to-average-ratio orthogonal frequency di-
vision multiplexing (OFDM) signals and large spurious inter-
ferer signals.

It is now well understood that the RFPA is affected by
two types of memory: short-term memory (STM), primarily
caused by matching networks and transit time within the
transistors (i.e., in-band frequency dispersion), and long-term
memory (LTM), due to biasing circuits, automatic gain control
(AGC) circuits, transistor self-heating and trapping effects (i.e.,
out-band low-frequency dispersion). It has also been evidenced
that the LTM causes the most critical signal distortion, as it
is harder to precompensate using usual predistortion tech-
niques [3].
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A number of approaches and variations have been proposed
for designing the PA model, which can be divided into two cat-
egories: the explicit-discrete-time model [4]–[18] and the con-
tinuous-time model [19]–[39] approaches.

The explicit-discrete-time model approach is the most direct
and common one, it directly fits the discrete-time simulation
environment where the model is to be used. This comprises
the popular memory-polynomial model [8]–[13], its more gen-
eral time-series variant [14]–[18] and the discrete Volterra se-
ries model [4]–[7]. The approach however suffers a number of
well-known drawbacks, mostly the difficulty of the selection of
the number of delay taps and their time distribution. This affects
the model learning capabilities and is a source for overfitting is-
sues, especially in the presence of short and long time constants.

On the other hand, the continuous-time model is an indi-
rect approach to the ultimate discrete-time implementation;
it tends to mimic the well-established device compact mod-
eling process. First, an equivalent network is postulated as
a collection of linear/nonlinear integro-differential equations
from device physics and/or empirical observations. Second,
conveniently chosen and usually simple stimuli are used to
identify the kernels of the integro-differential equations. Fi-
nally a numerical integration scheme is employed to digitize
the identified model equations. The approach comprises the
so-called two-box, three-box, and parallel Hammerstein–Wi-
enner models [19]–[21], the polyspectral models [22], and
the nonlinear-integral models [23]–[39]. This approach has
the advantage that the number of delay taps and their time
distribution are not fixed a priori for all input signals, but are
automatically adjusted from the extracted integro-differential
kernels and the incoming input signal speed.

In turn the difficulty on the continuous-time model approach
lies in devising a good theory for constructing an equivalent
network sufficiently representative of the PA internal dynamics.
We may here distinguish two categories of models, which we
will term single-memory-path (SMP) model and two-memory-
path (TMP) model that differ according to whether or not the
equivalent network has separate branches for STM and LTM
mechanisms.

The SMP model [19]–[27] is the most direct one; the PA is
represented by some network, usually a cascaded and/or parallel
association of linear filters, memoryless nonlinearities and/or
Volterra kernels, whose transfer functions (kernels) are to be
identified from a specific regression procedure. In this case,
STM and LTM contributions are not distinguished and hence
captured as an average effect. The identification process thus
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tends to be ill-conditioned, limiting the generalization property
of the model. A comprehensive survey of the various works on
the approach may be found in the review by Pedro and Maas [2].

The TMP model approach tries to resolve the aforemen-
tioned limitation by getting more insight into the memory
mechanism, dissociating the contributions of the two types of
effects. The model is then represented by an equivalent network
comprising distinct branches for STM and LTM dynamics. A
few works have been carried out on this direction in the last
decade [28]–[39] since the introduction by Bosch and Gatti
[3] in 1989. This paper extends the work in [39]; it gives a
synthesis of the previous works and theoretical details on the
recent developments constituting, from our perspective, the
state-of-the-art in PA continuous-time models.

In the following, Section II introduces and clarifies the TMP
model concept from [3], [28]–[39], and then identifies the two
model topologies (the feedback (FB) and feed-forward (FF)
topologies) arising from this concept. In Section III, we investi-
gate the most common topology (i.e., FF topology), and identify
a systematic limitation in the original TMP model concept,
especially for the modeling of PAs with IMD asymmetries. In
Section IV, a new state variable is introduced in the concept
to resolve the issue. Section V examines the theory for the FB
model topology parameters extraction. Section VI addresses
the numerical implementation issues of these continuous-time
models and Section VII shows an application example and
examines the implementation efficiency and modeling accuracy
of the proposed solutions. Finally, Appendices I-A–I-E give de-
tails of model equation derivations and step-by-step algorithms
for the model extraction and implementation.

II. TWO-MEMORY PATH MODEL

At the system level, the basic assumption is that signal
at any port can be expressed as a band limited modulated signal

(1)

where and are, respectively, the complex envelope (the
modulation) and the carrier. For modeling the PA, we need to
identify the relationship between the complex envelope input

and the output . To that end Mazière et al. [34], fol-
lowing similar considerations by Bosch et al. [3], Meghdadi
et al. [28], Vuolevi et al. [29], Asbeck et al. [30], Draxler et
al. [31], Pedro et al. [32], Boumaiza et al. [33], Kenney et al.
[36], Mazeau et al. [37], and Verspecht et al. [38] proposed
the two-memory-path model topology depicted in Fig. 1. This
topology tends to mimic the two basic memory routes within the
PA circuit. The PA output is modeled as a short-term-memory
response that gets modulated by a long-term response in a FB
system. An important assumption in these works is that the
long-term modulation is solely driven by the time varying am-
plitude of the envelope, i.e., , which we will later show is
not necessarily true.

In the FB model structure, Fig. 1, the STM path is intended
to capture the principal dynamics of the PA, i.e., the one re-
sponsible for the amplification and bandpass filtering effects.
When a variable envelope signal goes along this path, the short-
term nonlinearity generates a low frequency signal that is fed

Fig. 1. Two-memory-path FB model topology.

Fig. 2. PA two-memory-path mechanism interaction.

back to the input following an LTM path. This LTM dynamics
is itself nonlinear; it can be seen as a slow modulation of the
dc quiescent point of the amplifier, at the rate of bias network
charging/discharging, device self-heating or eventual trapping
effects. These memory mechanism interactions are sketched in
the artistic view Fig. 2.

Some of the works, especially [31], [35], [37], have tried to
dissociate the self-heating effects from the other LTM mecha-
nisms. This dissociation, however, is not easily accomplished
since the time constants of the various mechanisms fall practi-
cally in the same range. Moreover, as shown in [37], an effective
characterization of heat generation and dissipation in the PA is
hardly doable with conventional measurement techniques but
requires a complex 3-D finite element simulation of the ampli-
fier chip, package layers, and heat sink that unfortunately is not
easily affordable for most designers.

The method proposed in this work does not make a distinction
between the LTM mechanisms; these are considered as a whole,
as is indicated in Fig. 2.

Now let and be the input, output, and FB
signals in Figs. 1 and 2, respectively. For the purpose of illus-
tration, if we assume that the complex signals and are
both nonzero at any time instant , then without loss of gener-
ality, we have that the STM and LTM paths are characterized by
a time varying complex gain and a FB coefficient

, respectively, so that we may write the following:

(2)

Note that the equivalent STM path gain and LTM path FB co-
efficient above are both invariant with the input signal phase
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Fig. 3. Two-memory-path FF model topology.

since the PA is supposed to be a time-invariant system [24],
[25]. Factoring (2), the model output takes the canonical FB loop
equation

(3)

Now, if we consider an assumption that the open-loop gain
is small compared to

1, then the model output can be approximated as follows:

(4.1)

where

(4.2)

In (4) it is understood that the phase angle ratio between
and is also a function of and invariant to phase for
sake of system time-invariance. It is then apparent from (4) that
under the assumption of relatively low long-term memory ef-
fects, the FB topology of the model, Fig. 1, may be approxi-
mated by a FF structure Fig. 3.

In the following, we will first investigate the FF topology be-
cause of its relative simplicity and then extend the derivations
to the FB topology.

III. FF MODEL TOPOLOGY

Considering the structure in Fig. 3, we observe that STM
and LTM effects can be easily de-embed from the system re-
sponse as follows. Indeed in the above TMP topologies, when
the input amplitude is time invariant, any time variation
in the output envelope is due only to the STM mechanisms.
Hence the STM contribution may be easily identified from a
single-tone continuous wave (CW) stimulus, with a frequency
sweep in the bandwidth. Once the STM contribution has been
identified, the LTM contribution can then be probed with a stim-
ulus exhibiting time-varying amplitude.

More precisely, the experiments carried out in the previous
works [24]–[27], [34], [35] have shown that both the STM
and the LTM dynamics, when considered individually, are
efficiently described by a nonlinear integral model as follows:

(5.1)

(5.2)

Hence, the model output writes

(5.3)

We thus define the time-varying frequency-domain (TVFD) ker-
nels associated with the STM and LTM nonlinear impulse re-
sponses in (5) as

(6.1)

(6.2)

As explained above, to identify the TVFD kernels,
we will first drive the PA with a single-tone CW signal

, so that the input envelope has
constant-amplitude and linear time-varying phase, i.e.,

(7)

Because of the bandpass property of the PA, the PA output
signal is also a constant amplitude envelope signal at the input
frequency, which writes

(8)

Accounting of (7) in (5.3) we find that the model output signal
expresses

(9)

Note that because the model kernels are invariant to the input
signal phase, the complex amplitude can be given an arbi-
trary phase in the experiment. Henceforth, to simplify the no-
tation, we will consider that is real and positive, so that we
may substitute with .

Now equating (9) and (8), we find

(10)

By virtue of the postulated long-term memory generation
principle, we observe that must be zero, because
a constant amplitude signal cannot generate a modulation
stimulus. Hence, we identify the STM kernel simply as the
ratio of the PA output signal to the input

(11)

The input amplitude and frequency offset are then
swept throughout the operating input amplitude range and fre-
quency bandwidth, respectively, in order to fully characterize
the PA. The STM kernel thus corresponds to
the so-called AM-AM, AM-PM characteristic of the PA, as a
function of the input frequency.
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Fig. 4. FF LTM kernels extraction bench.

For identifying the LTM kernel , we drive the
PA with the following two-tone stimulus: a large-amplitude tone
and a small-amplitude tone CW signal

(12.1)

This yields a time-varying envelope composed of a small-
signal ac envelope on top of a large dc envelope

(12.2)

With this excitation, the spectrum content of the signals ob-
served at the PA output and at the model internal nodes are thus
as illustrated in Fig. 4.

Applying (12) to (5), as described in Appendix I-A, we fi-
nally find the differential equation for solving as
follows:

(13)

A close observation of (13) however shows that this is an
overdetermined system of four equations in the two unknowns

and . This has a unique solution
only if the synchronous and anti-synchronous components
of the LTM are identical by stimulus conjugation, i.e., if the
following condition is verified:

(14)

In the previous works [27], [34], [35], the condition (14) has
been implicitly assumed, so that two of the equations were not
taken into account; this however is not valid for all circuits. Ex-
perimentations carried out on a number of circuits have shown
that the equality (14) is not verified, especially at large frequency
offset , as we will see in the application example Section VII.

The indetermination in (13) is actually the consequence of an
insufficiency in the assumption that the LTM is solely driven by
the time varying amplitude of the envelope, i.e., . In Sec-
tion V, we will introduce a new state variable to remove the in-
determination and get a well conditioned identification process.

IV. MODIFIED FF MODEL TOPOLOGY

We have seen that the principal generating assumption of the
TMP model topology (see Figs. 1 and 3) leads to an indetermi-
nate equation for solving the LTM kernel. This is an indication
of a missing state variable for describing the LTM dynamics.
So here we postulate that the LTM dynamics is governed by
both the time-varying amplitude and frequency of the input en-
velope, rather than the amplitude alone. Indeed the PA input
signal is composed of two independent
variables, the amplitude and phase , constituting
the two basic state variables of the system. We then observe that
the output of the LTM path in the structures Figs. 1–3 is
actually a modulation coefficient of the input signal, or in other
terms, it is a pattern of the system transfer function and not the
system output signal. As such, we justify the above given pos-
tulate by the following:

a) as indicated previously, the transfer function of a time-
invariant system is invariant to the input signal phase [24],
[25], [1];

b) transfer function of a dynamic system is a function of
input signal frequency, i.e., the derivative of input signal
phase;

c) transfer function of a nonlinear system is a function of the
input signal amplitude.

Accordingly, we enhance the model (5) to the following:

(15.1)

(15.2)

(15.3)

where we have defined the instantaneous phase and frequency
of the envelope as

(15.4)

Note that in order to limit the model complexity we have as-
sumed that the LTM modulation depends linearly on the
time-varying frequency, while it is nonlinearly dependent on the
amplitude. The assumption of linearity with respect to instanta-
neous frequency can be understood by the fact that, as illustrated
in Fig. 2, if one drives the PA with a two-tone signal for ex-
ample, the amplitude of the beat frequency component which is
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the source of the LTM modulation depends strongly on the am-
plitude and spacing of the two tones, but only mildly on the value
of the two frequencies (provided they remains reasonably within
the bandwidth). Amplitude and spacing of the two tones are a
projection of the envelope signal amplitude value and its
time velocity, while the average value of two tone frequencies is
a projection of envelope instantaneous frequency . More-
over, for the sake of spectral resource preservation, the instanta-
neous frequency hop in communication signals is usually kept
small compared to the carrier frequency. The model topology is
now as illustrated in Fig. 5.

Observing as previously that in (15.2) is null for
a single-tone CW input (both the amplitude

and the frequency are time-invariant in this case),
the identification of the STM kernel remains unchanged from
Section III.

For the extraction of the two LTM kernels, we still apply the
two-tone signal (12), from which we see that, provided and

are real, the time-varying phase and frequency are expressed
as follows:

(16.1)

(16.2)

The new LTM time-varying frequency-domain kernels are
defined

(17)

Taking into account the new variable (16.2) and reconsidering
accordingly the steps in Appendix I-A, with the now two LTM
kernels, we readily find the well conditioned system of four
equations in four unknowns below, for solving
and

(18)

Fig. 5. Modified FF model topology.

Fig. 6. New FB model topology.

As for the STM characterization, the input amplitude and
frequency are to be swept throughout the operating input am-
plitude range and frequency bandwidth respectively, in order
to fully characterize the PA LTM dynamics. The LTM extrac-
tion (18) is a differential equation system in the variable ,
that can be efficiently and accurately resolved as described in
Appendix I-B.

V. FB MODEL TOPOLOGY

As stated before, the FF topology considered in Section IV is
a first-order truncation of the FB structure characterizing LTM
mechanisms in the PA. The FF structure is conceivable when
the long-term modulation of the quiescent point due to memory
remains small or moderate, which is usually the case. Neverthe-
less for increased accuracy and more generality, it is of interest
to investigate the FB topology. Though this topology has been
indicated many times in the past for illustration purposes, a full
identification of its characteristics has not been carried out so
far.

We will show below that the methodology used to identify the
characteristics of the FF topology can be readily extended to the
FB topology.

First, we will reconsider the FB topology, Fig. 1, in order to
account for the new state-variable (time-varying frequency) dis-
cussed above. The model topology is therefore as is illustrated
in Fig. 6.

Considering the signals at the various model nodes, the PA is
thus defined by the following equation:

(19.1)
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Fig. 7. FB LTM kernels extraction bench.

(19.2)

We again observe that, as seen previously with the FF
topology, the LTM term is null when the PA is driven
with a single-tone CW signal . Therefore, the
STM kernel identification remains unchanged, i.e.,

(20)

For identifying the LTM kernels we again drive the PA with
the two-tone stimulus (12). As in the illustration, Fig. 7, this
will generate a three-tone signal at the PA output and a two-tone
signal at the LTM block output node as follows:

(21.1)

(21.2)

(21.3)

The components of and are directly acquired from
the experiment; we have to identify the components of
from (19). Thus, following the derivations in Appendix I-C, we
find the following equation system from which these can be
computed:

(22)

Finally, with the four components and
determined we can use the differential equa-

tion (A3.4) in Appendix I-C, to solve the two LTM kernels
and .

VI. MODEL NUMERICAL IMPLEMENTATION

The model (15) is a nonlinear convolution integral form
that needs to be digitized efficiently in a computer imple-
mentation, from the knowledge of the 3 TVFD kernels

and . An efficient way
to handle the problem is to use the orthogonal lookup-table
decomposition method from Quindroit et al. [40] together with
the vector fitting pole/residue approximation from Gustavsen
[41]–[43]. We recall the approach briefly below; more details
can be found in the indicated references. The principal idea is to
project each 2-D kernel onto two single-dimensional
basis and , so that

(23)

The usual choice for basis functions is usually the
monomial which is known to be ill-conditioned; in [40],
we propose a better choice that is to construct an optimal orthog-
onal basis using singular-value decomposition (SVD)
and cubic-splines functions. Once the basis is formed,
the other basis is easily determined by least-square
fitting.

Basis then represents a series of linear filters that
can be effectively synthesized with the vector fitting method
[41]–[43] guaranteeing the model integration stability, i.e.,

(24)

where all poles have negative real part.
Accounting for (23) and (24) in (15) or (19), each of the non-

linear convolution integral involved takes the following general
form:

(25)
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Fig. 8. Nonlinear-integral kernel implementation.

Digitizing the convolution integral in (25) using piece-wise
linear approximation of inputs to filters finally yields the ulti-
mate discrete form of the proposed model

(26)

The model is thus implemented as a -parallel filter bank
(parallel Hammerstein structure), as illustrated in Fig. 8; each
branch is composed of a nonlinear memoryless block driving
a parallel connection of linear IIR filters. Each linear filter has
only a single delay tap, with a delay value adjusted to the in-
coming signal speed to ensure accuracy. As for the character-
istics of the memoryless blocks, being orthogonal in
construction, the number of branches is optimally small, usu-
ally less than five. This shows that, compared to the explicit-dis-
crete-time modeling approach, the continuous-time modeling
approach is amenable in a more systematic and controllable way
to an optimal discrete-time model implementation.

VII. APPLICATION EXAMPLE

Both model extraction and implementation processes de-
scribed in the previous sections are summarized in algorithmic
forms in Appendix I-D and I-E respectively. These algorithms
were realized in MATLAB. To verify the theory herein devel-
oped, we have considered the modeling a typical, one stage,
narrow band, 14 dB gain, 25 dBm output RF MOS amplifier,
working at 830 MHz center frequency, with 5% bandwidth.
All the experiments were carried out from simulation, using
Agilent-EEsof ADS/Ptolemy and MATLAB cosimulation. For
the interested reader, the circuit schematic can be found in

Fig. 9. PA gain and phase shift at center frequency (830 MHz).

Fig. 10. FF model LTM output components.

Agilent-ADS amplifier example project [44]. This example
has been chosen because it converges easily with both HB and
Envelope analysis, so that it allows an effective comparison
between the models and the circuit simulation for any type of
stimulus.

Fig. 9 shows the gain compression and phase shift of the PA
at center frequency.

From the extraction process (Appendix I-D, Section 2),
Step 4), we have recorded the LTM path output components

and . Fig. 10 shows the plot of
the four components, as a function of the frequency offset, for
three levels of input amplitude . These are unitless compo-
nents. We may see from the plots that the condition (14) is not
verified here; and , as well as and

grow farther apart as the frequency offset increases.
This confirms the need for a supplementary state variable in
describing the LTM memory mechanisms, as we discussed in
Sections III and IV.

For illustration purposes, Fig. 11 presents 3-D plots showing
the shape of the three frequency-domain kernels for the FF
model.

We have performed a classical third-order IMD test, with two
identical large-signal tones, fixing one of the tones at bandwidth
center and sweeping the other to either of the bandwidth ends.
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Fig. 11. Modified FF model kernels: (a) �� � �� ���; (b) �� � �� ���; (c)
�� � �� ���.

Fig. 12 shows the plot of the left and right hand IMD3, for four
different input levels. The figure compares the HB circuit sim-
ulation with the original FF model and the modified FF model
version. We may observe from the figure a number of impor-
tant points: first, there are large asymmetries between right and
left hand IMDs; second, there is an excellent match between the
modified FF model version and HB simulation; third, the modi-
fied FF model provides a substantial improvement over the orig-
inal version, especially in the IMD sweet spot regions.

The FB model version has also been extracted from the same
data. In Fig. 13, we have plotted the product

Fig. 12. Left and right IMD3 plots: Comparison between circuit simulation,
modified FF model, and original FF model.

Fig. 13. FB model equivalent open-loop gain.

of the FB model; this product represents, in a
sense, the open-loop gain of the FB model. We may see that the
open-loop gain remains fairly small, inferring that a FF imple-
mentation would be a good approximate for the FB structure.
As a result, we may see in Fig. 14 where we compare the IMD
results from the FF and the FB model versions that they produce
practically the same figures. We must say, however, that the FB
model, precisely because of its FB structure, has a natural po-
tential for instability, though we have not encountered such a
situation here. The model being nonlinear, the stability condi-
tions remains difficult to draw; hence in this context we prefer
the FF model structure. In the next plots, for sake of figure read-
ability, we will only show the FF model when necessary.

The second test stimulus considered is a pulse RF signal with
a fixed carrier frequency 830 MHz. Fig. 15 shows the magnitude
of the output pulse as a function of time, for four levels of input
power. We see that the fit between the model and circuit simula-
tion is good, even at high gain compression. Both the rising and
falling edges are fairly well reproduced.

The third test stimulus we have considered is a more elab-
orate communication signal, a 3.84 MHz bandwidth WCDMA
signal. With that signal we have carried out an ACPR analysis
of the amplifier, with an input power sweep from the linear re-
gion up to 3 dB gain compression. Fig. 16 compares the left and
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Fig. 14. IMD3 comparison between modified FF and FB model versions.

Fig. 15. RF pulse response: comparison between FF model and circuit
simulation.

Fig. 16. Left and right ACPR plots: comparison between circuit simulation,
original FF model, modified FF, and FB models.

right hand ACPR figures obtained from Envelope-transient cir-
cuit simulation, the original FF, the modified FF, and FB model
versions. Again, we see important ACPR asymmetries and once
again a close agreement of both the FF and the FB model with
the circuit simulation. The improvement of the new models over
the original FF model is also substantial, up to 5 dB. The model
run time for the ACPR curve is a fraction of a minute, while it

Fig. 17. NMSE (dB) for CDMA input signal.

Fig. 18. Radio desensitization simulation—PA output spectrum: comparison
between circuit simulation and FF model.

takes about two hours for the circuit simulation. Fig. 17 gives the
plot of the normalized mean square error (NMSE) on the output
waveform corresponding to the ACPR plot in Fig. 16, for both
the FF and FB models. This remains less than 0.6% all over the
input power range.

The last test we have carried out is a radio desensitization
simulation. The amplifier is driven with a 40 dBm desired
QAM16-OFDM RF channel, a 10 dBm CW interferer at 4
MHz offset and 10 dBm modulated interferer at 10 MHz offset.
Fig. 18 shows the total spectra of the input and output signals.
The model and circuit simulation results are superimposed on
the figure. The decibel deviation between the two results is also
shown in the figure. This is computed as the power spectral den-
sity difference between the model and the circuit simulation, at
the same frequency. The NMSE of the model on the waveform
is about 0.12%. There is again a close agreement of the model
with the circuit simulation in this extremely complex and wide-
band stimulus configuration.

To conclude this application example, we can say that owing
to the simplicity of the stimuli used to extract the model (CW
large-signal tone + small-signal tone), and under the excellent
performance of the model on large two-tone IMD analysis as
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well as on pulsed RF signals and complex communication sig-
nals, the modeling approach proposed here effectively captures
the fundamental invariants of the system making the model
apply to arbitrary complex communication signals.

Unfortunately, we have not been able to complete the model
extraction from the experimental setup; this is underway but it
is currently hindered by the limitations of the available large-
signal network analyzer equipment, especially phase calibration
inaccuracies. We hope to complete this sometimes and show the
results in a future communication. Nevertheless, the systematic
PA modeling theory presented herein, validated on circuit sim-
ulation basis, is an invaluable advancement; especially for in-
tegrated systems design where discrete block hardware proto-
typing is not always an option. The model extracted from cir-
cuit schematic can then speedup the system-level verification.
We expect that this article will find readers with the necessary
equipments and good measurements expertise to test the extrac-
tion algorithm detailed in Appendix I-D.

VIII. CONCLUSION

This paper has presented a synthesis of past works on
the continuous-time modeling principle, especially those ad-
dressing the nonlinear short-term and the long-term memory of
the PA by means of the modified Volterra and nonlinear-integral
approaches. It has clarified the concept of the two-memory-path
model and provided the full theoretical details for the extraction
of the model integral kernels and their effective numerical
implementation. The so-called FF and FB model topologies
have both been discussed; a singularity has been identified in
model kernels extraction equation, and a new state variable is
identified that resolves the issue.

The model is extracted from a simple stimulus (a large-signal
CW tone and a small-signal tone) which guarantees an easy, fast,
and accurate parameter extraction by HB simulation. The excel-
lent model results obtained with large-signal two-tone stimuli
as well as RF pulse and highly complex communication sys-
tems stimuli have validated the model topologies and extraction
method. This now makes the PA modeling process stand in line
with the well established transistor compact modeling process
where the model parameters are extracted from simple dc and
small-signal ac stimuli, and the model topology and extraction
procedure validated on the response to large signal RF stimuli.

Despite the apparently cumbersome integral form of the
model, this paper has shown how it lends itself to an optimal
digital implementation, using well known and freely available
numerical techniques.

APPENDIX

A. FF Model LTM Kernel Identification Equation

Given the input signal to the PA

real and positive (A1.1)

we have

(A1.2)

Fig. 19. Two-tone probe: left and right sideband stimulus.

Because is small compared to unity, the output of the PA is
a three-tone signal that we may note as in the following:

(A1.3)

The components of the signal above are directly acquired
from the amplifier output, either from measurements or HB
simulation.

Inserting (A1.3) in the already identified STM path (5.1), and
taking a first-order Taylor expansion we also find a three-tone
signal as follows:

(A1.4)

Accounting of (A1.4) in (5.3), the output of the LTM path is
found to be given by

(A1.5)

Note that the subscripts and in the above are used to des-
ignate respectively the synchronous and counter-synchronous
output frequency components, as referred to the input compo-
nent ; see illustration, Fig. 19.

Considering (A1.1)–(A1.2) in the expression of the LTM
kernel, and taking a first-order Taylor expansion about we
have

(A1.6)

Thus, inserting (A1.6) in (5.2) and equating with (A1.5), we
obtain the following differential equations system to be solved
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for and , for all between zero and
half the PA bandwidth:

(A1.7)

B. Solution of the LTM Kernel-Identification Differential
Equation

Given the differential equation (18) recalled below for con-
venience:

(A2.1)

For a fixed offset frequency , the differential equation can be
resolved using classical Euler or trapezoidal rule, starting from

to , in order to determine the four terms
and .

This however requires fine steps of in order to minimize
the numerical integration error and ensure good extraction ac-
curacy. On the other hand, since the kernels tend to be smooth
functions of , a simpler and more accurate alternative is to
consider a power expansion of the left and right side members
of the equation, and equate the coefficients of the same power
order. To that end we write

(A2.2)

Note that the expansion has no power coefficient of order
less than one for and less than two for ; this is
so because LTM effects cannot be generated under small-signal
excitation conditions. Inserting the expansion in the differential
equation (18) and equating the coefficients of the same order, we
readily obtain a simple algebraic equation from which we extract

(A2.3)

Then, for each pair of frequency offsets , it suffices
to compute the polynomial approximation of the four LTM
path components, , obtained from
(A1.5), and use (A2.3) to get the power expansion coefficients
of the LTM kernels. Finally, we may then compose the kernels

and using (A2.2) for any desired grid of .

C. Computing the Feedback LTM Kernels

Given the expression of in (12) and that of in
(19.2) and inserting these in the STM path (19.1), we find

(A3.1)

Carrying out a first-order expansion of
around , we readily find that writes

(A3.2)
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Equating (A3.2) with (21.1), we find the following algebraic
equation for de-embedding the LTM components:

(A3.3)

Finally once the four components and
are determined, then similarly to the deriva-

tions in Appendix I-A, inserting (21.1) and (21.2) in (19.2)
and considering a first-order expansion in around ,
we find the system below for solving the two LTM kernels

and

(A3-3)

where from (21) we have set

D. Model Kernels Extraction Algorithm

Two variants of the TMP model have been described in this
paper, namely the FF and the FB models. They are composed
each of a STM and two LTM kernels. The models differ only on
the LTM kernels; the STM kernel is identical for both.

Let be the amplifier bandwidth and be the center fre-
quency. Consider a discrete set of frequency points

Fig. 20. FF LTM kernels identification measurement bench: (a) right sideband
stimulus and (b) left sideband stimulus.

cov-
ering the bandwidth. The extraction process of the kernels can
then be summarized in an algorithmic form as follows.

1) STM Kernel Extraction: For each frequency offset in the
set do the following.
Step 1) Drive the amplifier with a CW stimulus

and acquire the output signal
.

Step 2) Form the STM kernel as the ratio of the output to
the input complex amplitude:

.
Step 3) Repeat Steps 1)–2) for varying input amplitude ,

typically from linear region to 5 dB gain compres-
sion. A number of 30 amplitude points is usually suf-
ficient.

2) LTM Kernel Extraction for FF Model: The FF LTM
kernels extraction follows the measurement bench illustrated
Fig. 20. It uses two stimulus configurations, a right sideband
and a left sideband stimulus. This is summarized below.

For each frequency offset in the positive half set
do the following.

Step 1) Drive the amplifier with a two-tone right sideband
stimulus ,
with the small-signal component at least 30 dB
below the large component , and acquire the
three-tone output signal
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Then drive the amplifier with the left sideband stim-
ulus and
acquire the corresponding output signal

When doing extraction from HB simulation, use a
sufficiently large number of harmonics in the gain
compression zone (higher than 10), and prefer the
small-signal mixer mode; it provides the highest ac-
curacy and simulation speed.

Step 2) Repeat Step 1 for varying input amplitude , typ-
ically from linear region to 5 dB gain compres-
sion. Record the four terms (small-signal response
and the third-order IMD terms) and

as a function of .
Step 3) Apply the same input stimulus (Steps 1)–2) to the

STM kernel previously extracted to obtain the
small-signal response and the third-order IMD
terms generated by the STM path:
and , use (A1.4).

Step 4) Use (A1.5) to compute the four terms generated by
the LTM path: and .

Step 5) Use the polynomial method presented in
Appendix I-B to solve the differential equation
(18) describing the dynamics of the LTM kernels.
More precisely, compute a polynomial approxima-
tion in of the four measured characteristics

and . Then, with
(A2.3), calculate the coefficients for the polynomial
approximation of the LTM kernels
and as a function of .

3) LTM Kernel Extraction for FB Model: The FB LTM
kernel extraction follows the measurement bench illustrated
Fig. 21; it is similar to the FF extraction bench, to the exception
of a few details summarized below.

For each frequency offset in the positive half set
do the following.

Step s 1)–3) IDEM FF LTM extraction.
Step 4) Use (22) to compute the four terms generated by the

LTM path: and .
Step 5) The dynamics of the LTM kernels for the fixed pair

of frequency offsets is described by the differential
equation (A3.4). Equation (A3.4) cannot be solved as
previously with a simple polynomial method, instead use
the trapezoidal or Gear rule to integrate the differential
equation from to the maximum value. The
initial condition for both ,
and is zero since by definition, the LTM
mechanism dies away in small signal conditions.

E. Model Implementation Algorithm

The two models presented herein are all composed of three
TVFD kernels and .
The numerical implementation of each kernel is based on the

Fig. 21. Feedback LTM kernels identification measurement bench: (a) right
sideband stimulus and (b) left sideband stimulus.

orthogonal lookup table method summarized in algorithmic
form as follows.
Step 1) Given a 2-D kernel extracted on discrete

input signal voltage points
and frequency offset points ,
with ; form the matrix
such that .

Step 2) Use SVD algorithm to factor matrix as
, where is a diagonal matrix containing the

singular values .
Consider only the columns of the ma-
trix corresponding to the most significant singular
values, in order to form the matrix .
A good threshold is .

Step 3) Use least square approximation to obtain the coef-
ficients of the matrix such that

.
Step 4) Each column of matrix is a sampled version of

a basis function over the input voltage ; apply
cubic spline interpolation on each column of to
construct the continuous memoryless character-
istics of the parallel Hammerstein structure,
Fig. 8.
Each line of matrix is a sampled version of a basis
function over the frequency offset ; apply vector-
fitting algorithm on each line of to synthesize the

linear filters in the Hammerstein structure,
Fig. 8.
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Note that SVD, cubic splines as well as vector-fitting methods
are all freely available within MATLAB.
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