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ABSTRACT

Accurate system level simulation is indispensable for
efficient RF communication system design. However
system level models of nonlinear circuits are today very
limited by their inability to handle nonlinear memory
effects. The paper describes a new approach of system-
level modeling which accounts efficiently for nonlinear
envelope memory effects of wide band amplifiers,
multipliers and mixers.

INTRODUCTION

In the last two decades transistor-level simulation tools for
microwave and RF circuits have significantly evolved.
Work by various authors on Harmonic Balance (HB)
technique [1-3] has eased the calculation of steady state
response of nonlinear circuit under single and multi-tone
excitation. Initially focused on traditional microwave GaAs
circuits, solution algorithms of HB have been recently
enhanced by several authors [4-5] to handle more
efficiently the new demand on RF silicon ICs.  In the same
time Envelope transient techniques [6-7] have emerged that
handle multi-rate (mixed modulation and carrier) analysis
at transistor level. All these techniques form a complete
palette of efficient tools for the design of analog
communication system components. However despite their
today’s tremendous power, these tools still need large
memory resources and CPU time which make them
unsuitable for system analysis and tune. Significant
reduction on computer resource needs allowing efficient
possibilities for system analysis and tune can only be
achieved by a simulation at system level. The main limiting
factor of system level simulation today is model accuracy
of wide band nonlinear RF circuits (power amplifiers,
multipliers and mixers). One of the major limitations is that
models in use today do not account for nonlinear memory
effects. This paper describes a new system level modeling
approach based on “sliding kernels dynamic” Volterra
series, which accounts effectively of nonlinear memory
effects. Despite it has been widely used in mixer and
oscillator design, Volterra series[8] has a bad reputation

among RF engineers of being a cumbersome technique; but
yet it is the most accurate formalism for representing
nonlinear systems with memory, especially when the
system is large and distributed. Nevertheless the classical
form of Volterra series has poor convergence properties
and in practice it is hardly possible to measure its kernels
of order more than two to three. These limitations make the
classical Volterra series almost useless for most nonlinear
IC applications. What we propose to use in this paper is a
modified form of Volterra series [9] which resolves the
above limitations, providing sufficient accuracy with only
the first order  kernel. We will briefly present the modified
Volterra series equation in section II, then show how this
fits efficiently to system level modeling in section III. An
application example is presented which show the efficiency
of the proposed model.

CLASSICAL VS DYNAMIC VOLTERRA SERIES
EXPANSION

Fig.1  Nonlinear system with memory

The output )( nty of a nonlinear system with memory

duration t∆M can be intuitively expressed as
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),..,( 1 nnh λλ  is called Volterra kernel of order n . As it can

be seen, Volterra kernels are independent of the input
signal )(tx .  They are indeed coefficients of a power series
expansion. We thus see that for most nonlinear applications
encountered in analog IC systems it is necessary to
consider a large number of kernels in order to accurately
describe the response. Here comes the two-fold difficulty
of identifying high order kernels and computing multiple
dimensional integrals, which limits usefulness of this
elegant approach.

To try resolving these limitations, in [9] it was
suggested that carrying Taylor series expansion in eq (2)
around a well behaved trajectory 0x

&
 given by prior

knowledge of the system response, rather than the null
vector can give excellent convergence properties to the
resulting series. One simple and efficient trajectory has
been found by authors in [10] to be

T
nnn txtxtxx )](),...,(),([0 =

&
. In this case the resulting

modified Volterra series takes the form
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In the above expression ))(( txydc  is the static

characteristic (DC) of the system,  ),..,),(( 1 nn txh λλ
ø

are the

dynamic Volterra kernels, called so to imply their
dependence on the input signal. This modified series has
the important property to separate purely static effects from
memory effects, which are intimately mixed in the classical
series. Hence if the system is purely static, the series
converges only with the static term, irrespective of the
input power.  In fact for most components where memory
effects are parasitic effects rather than desired ones, the
nonlinearity lies mainly in the static term and memory
effects are just mildly nonlinear.  Hence series (4) can be
limited to only first order, with good accuracy.
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A more convenient form of eq (5) is obtained by
considering a Fourier integral in place of convolution to
find.
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In the above, )),(( ωtxH  is indeed the small signal transfer
function of the system computed around the pump )(tx . So
this model does not need complicate simulation and
extraction procedures.

Eq (6) has been used with some success by several
authors [10-12] to model GaAs transistors in harmonic
balance simulator. In the following we are extending this
principle to system level modeling.

SYSTEM LEVEL MODELING

At system level, we need to model nonlinear
components like power amplifier, multiplier, mixers and
VCO’s.
The basic assumption on system level modeling is that
signal )(tx  at any component port can be expressed as

band limited modulation around a carrier frequency:

])([)( 0j txetXetx ωø
ℜ= (7)

where )(tX
ø

and x0ω  are respectively the complex

envelope (modulation) and reference carrier (mid-channel
frequency for a multiplex) of the signal )(tx . All idle
frequencies are supposed to be sufficiently filtered-out
within the subsystem, or constitute otherwise distinct ports.

For sake of notational simplicity let us consider a
component block with only one input and output, as
depicted in Fig.2, the concept can be generalized to
multiple input and output blocs.

Fig.2 component bloc diagram

Reference carrier frequencies x0ω  and y0ω of excitation

and response being known a priori, they don’t bear any
information.  For modeling the bloc we need only to
identify the relationship between the two complex
envelopes )(tX

ø
 and )(tY

ø
. This problem of nonlinear

system envelope modeling has deserved a large amount of
literature [13-18]. The models proposed have been aiming
on traveling wave amplifier (TWTA) non-linearity. Hence
their efficiency is limited in handling nonlinear memory
effects, as those due to solid state power matching and
biasing circuits [17].

Basic dynamic volterra series model equation

The envelopes )(tX
ø

 and )(tY
ø

 being analytic signals,

)(tY
ø

 is actually a function of )(tX
ø

 and its conjugate.

Hence reconsidering equation (5),  with  )(tX
ø

 and )(* tX
ø

as input  signals, we  readily find

])([)( 0j txetXetx ωø
ℜ= ])([)( 0j tyetYety

ωø
ℜ=
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Replacing convolution  by Fourier integral in (8), we find
equivalently
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where
BW is the modulation bandwidth,

)(ΩX
ø

 the input modulation spectrum.

))(),(( * tXtXYdc
øøø

 is the static characteristic of the

subsystem, i.e. the response of the subsystem under a non

modulated carrier excitation ][)( 0
0

txjeXetx ωø
ℜ=  . If we

consider the case of an amplifier, this corresponds to the
well known AM/AM and AM/PM curves.

)),(),(( *
1 ΩtXtXH

øøø
 and )),(),(( *

2 ΩtXtXH
øøø

 are the

synchronous and image Volterra transfer functions of the
subsystem. These can be easily computed by applying a
two-tone signal of the form

1],[][)( )0(0
0 <<ℜ+ℜ= Ω+ XeXeeXetx txjtxj øøø

δδ ωω  to the

component, as depicted in Fig.4.

Fig.4 Dynamic Volterra kernels extraction set-up

Hence all characteristics of the model can be computed by
a simple two-tone (small signal mixer) HB simulation of
the subsystem. The static characteristic ()dcY

ø
accounts for

the purely static nonlinear effects and the two nonlinear
transfer functions ()1H

ø
and ()2H

ø
 for the memory effects.

The separation Ω  between the two tones is to be swept

throughout the bandwidth BW , it plays the role of
modulation frequency.

Sliding kernels  model

Nonlinear functions with complex conjugate variables

)(tX
ø

 and )(* tX
ø

 are convenient for mathematical
development, but not straightforward in practice, where it
is preferable to use their counter parts which are amplitude

and phase: )(tX
ø

 and )(tX
øφ .  In the case of an amplifier,

taking account of the system causality, we find that:

)(*
j

))(())(),((
tX

dcdc etXYtXtXY

ø
øøøø φ

=       (10)

),)(()),(),(( 1
*

1 Ω=Ω tXHtXtXH
øøøø

)(
2

*
2

2j
),)(()),(),((

tX
etXHtXtXH

ø
øøøø φ

Ω=Ω

Experimenting the above presented model we have
found that excellent accuracy over wider bandwidths can
be achieved if the term ( )..dcY

ø
 is not considered purely

static, but rather quasi-static, as outlined below.
Reconsidering eq (2), we thus obtain a model extension
termed “sliding kernels dynamic”  Volterra series  having
the expression below:
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where the sliding kernels ()
~
dcY , ()

~
1H  and ()

~
2H are

computed by sliding also the reference frequency x0ω
throughout the amplifier bandwidth, in the extraction
procedure depicted in Fig.4.  Note that dtd tX /)(

øφ  plays

the role of reference frequency shift as to the amplifier
mid-band frequency  midω . For each value of  x0ω , the

procedure of Fig.4 is carried, so that referring to (10) we
have:
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APPLICATION

The new method has been used to model a 4 stage 6Watts,
3GHz MMIC MESFET amplifier. We have computed the
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output of the amplifier with the new model for a single and
a two-tone stimulus in the 300MHz bandwidth of the
amplifier. Fig.5-6 compare the output of the model with the
complete circuit simulation by harmonic balance.  The
good accuracy and tremendous improvements made over
the classical memoryless AM/AM/PM model is clearly
visible, as the latter is invariably independent of frequency.
As expected, the new model is well describing the circuit
over a large bandwidth. Variation of intermodulation figure
with mixing frequency distance is well reproduced quite
deep into saturation.

Fig.5 Amplifier phase shift and gain over 300MHz bandwidth,
from 3GHz to 3.3GHZ and 30MHz step

Fig.6  Amplifier intermodultation C/I3  figure, from
-20dBm to –3dBm input ( 2dB  gain compression)

CONCLUSION

The paper has presented the basics of a new and powerful
behavioral modeling mechanism based on modified
Volterra series, so-called sliding kernels dynamic Volterra
series model. The model is simple to derive from circuit
simulation and also with some accommodations from load
pull measurements setup.  It can be applied to various
functions like amplifiers, multipliers and mixers.
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