

Hybrid-Active Load Pull With PNA-X And Maury Microwave

Steve Budkiewicz

Steve Dudkiewicz Director, Marketing & Business Development sdudkiewicz@maurymw.com

Your complete measurement & modeling solutions partner! © Agilent Technologies, Inc 2012

OUTLINE

- Background Info
- Vector-Receiver Load Pull
- Active and Hybrid-Active Load Pull
- X-Parameters and Active/Hybrid-Active Load Pull
- Pulsed-Bias Load Pull
- Conclusion

For a small-signal application, the S-Parameters can be measured by a Vector Network Analyzer (VNA), and the complex conjugates of S11 and S22 used to create input and output matching networks for maximum gain and power

Note: this only works for small-signal, DO NOT USE FOR POWER APPLICATIONS!

If small-signal s-parameters are used to determine the complex conjugate of S11 and S22 for a matching network, the output power, gain, efficiency... will not be at its maximum..

The above Smith Charts show the same impedance matching at different input power levels (small signal and large signal); note the large signal output power is down 3dB 4 from its maximum (3dB = 50%!) © Agilent Technologies, Inc 2012

1) Vary impedance presented to DUT (active device, transistor)

2) Measure Pout, Gain, Efficiency...

3) Determine best matching impedance

4) Design matching network (EEsof ADS)

VSWR α Gamma α 1/Ω 10:1 VSWR = Γ=0.82 = 5Ω 20:1 VSWR = Γ=0.9 = 2.5Ω

 $\Gamma = a/b$

Mechanical Tuner Gamma comes from probe (slug) inserted into airline

© Agilent Technologies, Inc 2012

In **Traditional Load Pull**, delivered output power is calculated from Power Meter de-embedded through S-Parameter block and Impedance Tuner

<u>Available</u> input power is calculated from gain lookup table created during power calibration or from input Power Meter and then de-embedded through S-Parameter block and Impedance Tuner *Your complete measurement & modeling solutions partnerl* © Agilent Technologies, Inc 2012

Large signal input impedance, Zin, changes as function of:

- Drive power
- Zload

Traditional load pull matches source impedance at single power, not taking into account varying Zin during power sweep

Pin min (dBm) [f0]

Gain values look low because only Pin, available is used... reflected power due to mismatch is not taken into account

Traditional load pull only reports Transducer Gain

Your complete measurement & modeling solutions partner!

© Agilent Technologies, Inc 2012

OUTLINE

- Background Info
- Vector-Receiver Load Pull
- Active and Hybrid-Active Load Pull
- X-Parameters and Active/Hybrid-Active Load Pull
- Pulsed-Bias Load Pull
- Conclusion

Network Analyzer

Your complete measurement & modeling solutions partner!

© Agilent Technologies, Inc 2012

Max power gain (dB) @ f0

27.0

Pin min (dBm) [f0]

26.0 25.0 24.0 - Power Gain 23.0 22.0 30.0 25.0 20.0 -15.0 10.0 15.0 5.0 0.0 5.0 0.0

Pin min (dBm) @ f0

Gain values look low because only Pin,available is used... reflected power due to mismatch is not taken into account Knowing Zin allows us to calculate Power Gain, taking into account mismatch thereby showing true gain potential of device

	Traditional LP	Vector Receiver LP
Pre-Characterization	Required	Recommended (not required)
Number of Points	More points = greater accuracy (even with interpolation)	Minimum points required (no impact on accuracy)
Tuner De-embedding	Critical! (Accuracy relies on de-embedding)	No tuner de-embedding

	Traditional LP	Vector Receiver LP
Verification Procedure	ΔG _t complex conjugate matched verification	Zin vs. Zload comparison ΔG_t complex conjugate matched verification

Measurement Parameter	Traditional Load Pull	Vector-Receiver Load Pull
Input Reflection Coefficient (Z _{in})	8	N
Available Input Power (P _{in,svail})		\bigcirc
Delivered Input Power (P _{in.del})	8	
$Output \ Power \ (P_{out})$	\bigcirc	\checkmark
Power Gain (\underline{G}_p)	8	\bigcirc
Transducer Gain (Gt)	\bigcirc	\bigcirc
Power Added Efficiency (PAE)	8	
Efficiency (Eff)	\checkmark	\checkmark
AM/PM	8	\bigcirc
Calibrated Harmonic Power	Spectrum analyzer required	\bigcirc
Multi-tone Measurements	Spectrum analyzer required	\bigcirc
Modulated Measurements	Spectrum analyzer required	\otimes
Power Sweep Speed (for 25 power levels)	~20 seconds	~1 second

OUTLINE

- Background Info
- Vector-Receiver Load Pull
- Active and Hybrid-Active Load Pull
- X-Parameters and Active/Hybrid-Active Load Pull
- Pulsed-Bias Load Pull
- Conclusion

Your complete measurement & modeling solutions partner!

© Agilent Technologies, Inc 2012

VSWR α Gamma $\alpha 1/\Omega$ 10:1 VSWR = Γ =0.82 = 5 Ω 20:1 VSWR = Γ =0.9 = 2.5 Ω

 $\Gamma = a/b$

Mechanical Tuner Gamma comes from probe (slug) inserted into airline Γ<1

Active Tuner Gamma comes from signal generator and amplifier Γ=1 or Γ>1

> Maximum Tuning Range (exaggerated for effect)

CABLE ADAPTOR TUNER

Losses of cables, probes, test fixtures reduces tuning range and <u>cannot</u> be overcome using traditional load pull methods

© Agilent Technologies, Inc 2012

Res

ACTIVE & HYBRID-ACTIVE LOAD PULL

External Tuners

For Harmonic Load Pull, Traditional Load Pull systems require one mechanical tuner per frequency per DUT side

To tune Fo, 2Fo and 3Fo at the same time requires <u>3 tuners</u> (using multiplexer or cascaded methods)

It is possible to build 3 tuners in 1 box, but it becomes 2-3x longer and 2-3x more expensive

Active Fo Load Pull

Hybrid-Active Fo Load Pull

Active Fo, 2Fo, 3Fo Load Pull

Hybrid Active Fo, 2Fo, 3Fo Load Pull

Your complete measurement & modeling solutions partner!

© Agilent Technologies, Inc 2012

Hybrid Active Fo, 2Fo, 3Fo Load Pull

Hybrid Active Fo, 2Fo, 3Fo Load Pull

Measured Data – Passive VS Active

Traditional Load Pull

Active Load Pull

Your complete measurement & modeling solutions partner!

© Agilent Technologies, Inc 2012

Gamma load [Imaginary] @ 2.f0

ACTIVE & HYBRID-ACTIVE LOAD PULL

OUTLINE

- Background Info
- Vector-Receiver Load Pull
- Active and Hybrid-Active Load Pull
- X-Parameters and Active/Hybrid-Active Load Pull
- Pulsed-Bias Load Pull
- Conclusion

X-PARAMETERS & ACTIVE/HYBRID-ACTIVE LOAD PULL

X-Parameters

- Behavioral model (measurement based)
- Black-box model
- Response to stimuli
- Valid under operating conditions used to create model
- Easily developed

X-PARAMETERS & ACTIVE/HYBRID-ACTIVE LOAD PULL Prior Art

Separate Disciplines

- Load Pull
 - Determine Match for a Single Device (basic amplifier design)
 - Verify Large Signal Models (model validation tool)
- X-Parameters at 50 Ohms
 - Excellent data for 50 ohm matched devices, even in non-linear region
 - What about non-50 ohms?

X-PARAMETERS & ACTIVE/HYBRID-ACTIVE LOAD PULL New Solution Combine Load Pull and X-Parameters

1) Calibrate PNA-X NVNA

2) Vary impedances/power /bias
presented to DUT (active device, transistor) → no change!

3) Measure Pout, Gain, Efficiency...
→ no change!

4) Import X-Parameter model into ADS and simulate circuits

X-PARAMETERS & ACTIVE/HYBRID-ACTIVE LOAD PULL

X-Parameters with Passive Load Pull → useful for all devices (within frequency range of tuner)

X-Parameters with Active Load Pull → ideal for low power devices (no tuner needed)

X-Parameters with Hybrid-Active Load Pull
 → ideal for higher power devices with low impedance requirements

 \rightarrow Ideal for harmonic load pull

X-PARAMETERS & ACTIVE/HYBRID-ACTIVE LOAD PULL

Comparison of Measured and Simulated Data

Your complete measurement & modeling solutions partner!

© Agilent Technologies, Inc 2012

X-PARAMETERS & ACTIVE/HYBRID-ACTIVE LOAD PULL Comparison of Measured and Simulated Data

Your complete measurement & modeling solutions partner!

© Agilent Technologies, Inc 2012

X-PARAMETERS & ACTIVE/HYBRID-ACTIVE LOAD PULL Virtual 2Fo and 3Fo Load Tuning, Example 1

X-PARAMETERS & ACTIVE/HYBRID-ACTIVE LOAD PULL Virtual 2Fo and 3Fo Load Tuning, Example 2

X-PARAMETERS & ACTIVE/HYBRID-ACTIVE LOAD PULL

X-Parameters combined with load pull are most useful for:

- Advanced Amplifier Design such as Doherty amplifiers, where multiple amplifiers must be individually modeled and then designed into the same simulation
- System Engineering X-Parameter models can be taken of amplifiers, mixers... and modeling into an entire system to simulate overall system performance

OUTLINE

- Background Info
- Vector-Receiver Load Pull
- Active and Hybrid-Active Load Pull
- X-Parameters and Active/Hybrid-Active Load Pull
- Pulsed-Bias Load Pull
- Conclusion

Prior Art Separate Disciplines

- Load Pull
 - Performed under CW or Pulsed-CW operation conditions
 - DC bias (or customer-improvised gate- or drain-pulser)
- Pulsed IV and S-Parameters
 - Used to collect IV curves under pulsed bias conditions
 - Used primarily for modeling activities

New Solution Combine Load Pull and Pulsed IV

Your complete measurement & modeling solutions partner!

© Agilent Technologies, Inc 2012

- Challenges
 - Synchronization between RF and bias
 - Sequencing between gate and drain pulsing and acquisition
 - Sequencing between bias and RF generation and measurement
- Solutions
 - Common trigger between PNA-X and BILT mainframe
 - Single software suite performs all sequencing and measurement of bias and load pull parameters

Synchronization between gate and drain pulsing and acquisition

Your complete measurement & modeling solutions partner!

© Agilent Technologies, Inc 2012

Synchronization between RF generation and measurement

Your complete measurement & modeling solutions partner!

 $\ensuremath{\mathbb{C}}$ Agilent Technologies, Inc 2012

OUTLINE

- Background Info
- Vector-Receiver Load Pull
- Active and Hybrid-Active Load Pull
- X-Parameters and Active/Hybrid-Active Load Pull
- Pulsed-Bias Load Pull
- Conclusion

CONCLUSION

Agilent, Maury and AMCAD Joint Solutions

CONCLUSION

ilent Technologies, Inc 2012

And Complete measurement or modeling controls partner:

CONCLUSION

For any questions, please contact your local Agilent FE or

Steve Dudkiewicz

Steve Dudkiewicz Director, Marketing & Business Development sdudkiewicz@maurymw.com

Your complete measurement & modeling solutions partner! © Agilent Technologies, Inc 2012